Σάββατο 21 Νοεμβρίου 2015

Απ’ τα ψηλά στα χαμηλά.


Ένα σώμα βάλλεται κατακόρυφα προς τα πάνω από ταράτσα πολυκατοικίας, ύψους Η = 20 m και η αλγεβρική τιμή της ορμής του σε συνάρτηση με τον χρόνο δίνεται από τη σχέση p = 30 – 20t (S.I.) (t0 = 0). Η επιτάχυνση της βαρύτητας έχει μέτρο g = 10 m/s2. Να υπολογίσετε:
α. τον ρυθμό μεταβολής της ορμής του σώματος
β. τη μάζα του σώματος
γ. τη χρονική στιγμή άφιξης στο μέγιστο ύψος
δ. τη χρονική στιγμή άφιξης στο έδαφος
ε. την ορμή του σώματος όταν φθάνει στο έδαφος
στ. τη συνολική μεταβολή της ορμής του σώματος από τη στιγμή της εκτόξευσης μέχρι τη στιγμή της προσεδάφισης

    

Δευτέρα 16 Νοεμβρίου 2015

Διαγώνισμα Οριζόντια βολή - κυκλική κίνηση

Ένα διαγώνισμα στην οριζόντια βολή και την κυκλική κίνηση




Για το διαγώνισμα και τις λύσεις πατήστε εδώ.

Σάββατο 14 Νοεμβρίου 2015

Δυο σώματα που πρόκειται να συγκρουστούν.



Από την ταράτσα μιας πολυκατοικίας σε ύψος Η=40m εκτοξεύεται οριζόντια, τη στιγμή t0=0, μια μικρή σφαίρα μάζας m1=0,6kg με αρχική ταχύτητα υ01=20m/s. Ταυτόχρονα, μια  δεύτερη σφαίρα μάζας m2=0,4kg, εκτοξεύεται από το έδαφος κατακόρυφα προς τα πάνω, από ένα σημείο Α, το οποίο απέχει απόσταση d=40m από την πολυκατοικία. Οι δύο σφαίρες συγκρούονται στον αέρα πλαστικά, οπότε δημιουργείται ένα συσσωμάτωμα. Δίνεται ότι g=10m/s2.
i)   Ποια χρονική στιγμή έγινε η σύγκρουση των δύο σφαιρών.
ii)  Να βρεθούν οι ταχύτητες των δύο σφαιρών, ελάχιστα πριν την κρούση και αμέσως μετά.
iii) Να υπολογιστεί η απώλεια της μηχανικής ενέργειας εξαιτίας της κρούσης.
iv) Να βρεθεί η κινητική ενέργεια του συσσωματώματος, τη στιγμή που φτάνει στο έδαφος.

Τρίτη 10 Νοεμβρίου 2015

Ένα σώμα πάνω σε αμαξίδιο.


Ένα σώμα Σ μάζας m=9kg ηρεμεί πάνω σε ένα ακίνητο αμαξίδιο μάζας Μ=1kg, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=40Ν/m, το οποίο έχει το φυσικό μήκος του ℓ0=40cm. Σε μια στιγμή (t0=0) ασκούμε στο αμαξίδιο μια σταθερή οριζόντια δύναμη μέτρου F=4Ν, μέχρι τη στιγμή t1=10s, όπου η δύναμη παύει να ασκείται.
i) Αμέσως μόλις ασκηθεί η δύναμη F (για t=0+), να βρεθεί ο ρυθμός μεταβολής της ορμής:
α) του σώματος Σ και
β) του αμαξιδίου.
ii) Να υπολογιστεί η ορμή και ο ρυθμός μεταβολής της ορμής του συστήματος των δύο σωμάτων, τη στιγμή t2 = 4s.
iii) Κάποια στιγμή (t3<10s) το ελατήριο έχει μήκος ℓ1=55cm. Να βρεθεί ο ρυθμός μεταβολής της ορμής κάθε σώματος τη στιγμή αυτή.
iv) Μια στιγμή (t4 >10s) η ταχύτητα του αμαξιδίου έχει μέτρο υ2= 3,2m/s, με φορά προς τα δεξιά, ενώ το ελατήριο έχει μήκος ℓ1=30cm. Να βρεθούν για τη στιγμή αυτή:
α) Η ταχύτητα του σώματος Σ.
β) Ο ρυθμός μεταβολής της ορμής κάθε σώματος.
v) Πόση ενέργεια μεταφέρθηκε στο σύστημα μέσω του έργου της δύναμης F;
Δίνεται ότι δεν αναπτύσσονται τριβές, ούτε μεταξύ σώματος Σ και αμαξιδίου, ούτε μεταξύ αμαξιδίου και εδάφους. Υπενθυμίζεται ότι η δύναμη του ελατηρίου είναι ανάλογη της παραμόρφωσής του, σύμφωνα με το νόμο του Ηοοke Fελ=k∙Δℓ, ενώ ένα παραμορφωμένο ελατήριο έχει δυναμική ενέργεια η οποία υπολογίζεται από την εξίσωση Uελ= ½ k∙(Δℓ)2.
ή




Παρασκευή 6 Νοεμβρίου 2015

Η ορμή και η μεταβολή της ορμής ενός συστήματος.

Από ένα σημείο Ο σε ύψος Η=10m από το έδαφος,  κρέμεται ένα σώμα Σ1 μάζας m=1kg στο άκρο νήματος μήκους l=5m. Εκτρέπουμε το σώμα Σ1, ώστε το νήμα να γίνει οριζόντιο και το αφήνουμε να κινηθεί. Το νήμα κόβεται τη στιγμή που γίνεται κατακόρυφο, με αποτέλεσμα το σώμα να πέφτει στο έδαφος και να συγκρούεται με ένα σώμα Σ2 μάζας Μ=5kg,  το οποίο κινείται στο λείο οριζόντιο επίπεδο με σταθερή ταχύτητα υ2=4m/s.
i) Να βρεθεί η ταχύτητα του Σ1 τη στιγμή που κόβεται το νήμα καθώς και η μεταβολή της ορμής του, στο διάστημα της κίνησής του στο άκρο του νήματος.
ii) Έστω t0=0 η στιγμή που κόβεται το νήμα. Να υπολογιστεί η ορμή του συστήματος Σ12, καθώς και ο ρυθμός μεταβολής της ορμής του συστήματος τη στιγμή t0.
iii) Ποια η οριζόντια απόσταση του σώματος Σ2 τη στιγμή t0,  από την κατακόρυφο που περνά από το σημείο Ο;
iv) Να υπολογιστεί η μεταβολή της ορμής του σώματος Σ1, από τη στιγμή t0, μέχρι τη στιγμή t1, ελάχιστα πριν συγκρουστεί με το σώμα Σ2.
v) Να βρεθεί η ορμή του συστήματος Σ12, ελάχιστα πριν την σύγκρουσή τους.
vi) Αν κατά τη κρούση δημιουργείται συσσωμάτωμα, το οποίο συνεχίζει να κινείται οριζόντια, να υπολογίστε τη μεταβολή της ορμής του συστήματος η οποία οφείλεται στην κρούση.
Δίνεται g=10m/s2, ενώ τα σώματα να θεωρηθούν αμελητέων διαστάσεων.

Δευτέρα 2 Νοεμβρίου 2015

Άλλο ένα σύστημα και η τριβή.


Σε λείο οριζόντιο επίπεδο ηρεμεί μια σανίδα μάζας Μ=4kg και πάνω της ένα σώμα Σ μάζας m=1kg. Σε μια στιγμή t=0, ασκούμε στη σανίδα μια σταθερή οριζόντια δύναμη F=18Ν, μέχρι τη στιγμή t1=5s, οπότε η δύναμη παύει να ασκείται. Κοιτάζοντας το σύστημα, «βλέπουμε» το σώμα Σ να πλησιάζει το άκρο Α της σανίδας, ενώ ξέρουμε ότι μεταξύ σώματος Σ και σανίδας αναπτύσσονται τριβές.
i) Να σχεδιάστε τις δυνάμεις που ασκούνται α) στη σανίδα,   β) στο σώμα Σ.
ii) Τη στιγμή t1 το σώμα Σ έχει ταχύτητα:
 α) προς τα δεξιά,    β) προς τα αριστερά,     γ) δεν κινείται.
iii) Αφού χαρακτηρίστε τις παραπάνω δυνάμεις ως εσωτερικές ή εξωτερικές, να εξηγείστε αν το σύστημα των σωμάτων σανίδα-σώμα Σ είναι μονωμένο ή όχι, στο χρονικό διάστημα 0-5s;
iv) Να υπολογιστεί ο ρυθμός μεταβολής της ορμής του συστήματος τη στιγμή t΄=3s, καθώς και η ορμή του τη στιγμή t1.
v) Τη χρονική στιγμή t2=7s, το σώμα Σ εγκαταλείπει την σανίδα έχοντας ταχύτητα μέτρου υ1=14m/s.
α) Η τελική αυτή ταχύτητα του σώματος Σ έχει κατεύθυνση, προς τα δεξιά ή προς τα αριστερά;
β) Να υπολογισθεί η τελική ταχύτητα της σανίδας, μετά την απομάκρυνση του σώματος Σ.
γ)  Αν ο συντελεστής τριβής ολίσθησης μεταξύ σώματος και σανίδας είναι μ=0,2 και g=10m/s2, να υπολογιστούν:
γ1) Ο ρυθμός μεταβολής της ορμής κάθε σώματος τη στιγμή t3=6s.
γ2) Η ταχύτητα κάθε σώματος τη στιγμή που παύει να ασκείται η δύναμη.

Κυριακή 1 Νοεμβρίου 2015

Μαζί, θα πάμε πιο μακριά.

Από ύψος Η = 145 m εκτοξεύουμε οριζόντια την χρονική στιγμή t0 = 0, μικρό σώμα Σ1, μάζας m1 = 0,3 kg, με ταχύτητα μέτρου υ01 = 26 m/s. Στην πορεία του και όταν ο ρυθμός μεταβολής της κινητικής ενέργειας του Σ1 έχει τιμή dK/dt = 150 J/sσυγκρούεται κεντρικά και πλαστικά με σώμα Σ2 μάζας m2 = 1 kg το οποίο το εκτοξεύσαμε κατακόρυφα από το έδαφος την χρονική στιγμή t1 > t0. Μετά την πλαστική κρούση το συσσωμάτωμα εκτελεί εκ νέου οριζόντια βολή και φτάνει στο έδαφος την χρονική στιγμή t3. Να βρεθούν:
α. το ύψος πάνω από το έδαφος που έγινε η κρούση
β. η απώλεια ενέργειας κατά την πλαστική κρούση
γ. η χρονική στιγμή t1 που εκτοξεύσαμε το σώμα Σ2
δ. η συνολική οριζόντια απόσταση που διανύει το Σ1 από την αρχική του θέση (βεληνεκές).
Δίνεται η επιτάχυνση της βαρύτητας g = 10 m/s2 και οι αντιστάσεις από τον αέρα θεωρούνται αμελητέες.