Δευτέρα, 16 Οκτωβρίου 2017

Μια κατακόρυφη κυκλική τροχιά

Μια μικρή σφαίρα Σ, μάζας m=0,5kg, η οποία θεωρείται υλικό σημείο,  είναι προσκολλημένη στο άκρο μιας ράβδου μήκους l=1m, η οποία στρέφεται με σταθερή γωνιακή ταχύτητα, γύρω από οριζόντιο άξονα, ο οποίος περνά από το άλλο της άκρο Ο, διαγράφοντας κατακόρυφο επίπεδο. Η περίοδος περιστροφής είναι Τ=2π/√6≈2,56s.
i) Τι κίνηση πραγματοποιεί η σφαίρα Σ; Να σχεδιάσετε πάνω στο σχήμα την ταχύτητα και τη γωνιακή ταχύτητα της σφαίρας.
ii) Να υπολογίσετε τα μέτρα της (γραμμικής) ταχύτητας και της γωνιακής ταχύτητας της σφαίρας.
iii) Σε μια στιγμή η σφαίρα περνά από τη θέση Α, όπου η γωνία που σχηματίζει η ράβδος με την οριζόντια διεύθυνση είναι θ=37°. Σε πόσο χρόνο η σφαίρα θα φτάσει (για πρώτη φορά)στη θέση Β με τη ράβδο οριζόντια;
iv) Πόση δύναμη ασκεί η ράβδος στη σφαίρα, στη θέση Α του σχήματος;
Δίνεται g=10m/s2 ενώ ημ37°=0,6 και συνθ=0,8.
ή


Πέμπτη, 12 Οκτωβρίου 2017

Μεταφέροντας φορτία


Σε λείο οριζόντιο μονωτικό δάπεδο ηρεμούν δυο μικρές μεταλλικές φορτισμένες σφαίρες Α και Β, με ίσες ακτίνες, οι οποίες είναι δεμένες μέσω δύο οριζόντιων μονωτικών νημάτων Ν1 και Ν2, όπως στο σχήμα. Η σφαίρα Α φέρει φορτίο q1=0,4μC, ενώ μετρώντας (μέσω αισθητήρα δύναμης) την τάση του νήματος Ν1, που την συγκρατεί, βρίσκουμε Τ1=0,006Ν. Η απόσταση μεταξύ των κέντρων των σφαιρών είναι d=60cm.
i)   Να υπολογίσετε το φορτίο της Β σφαίρας, καθώς και την τάση του νήματος Ν2.
ii)  Διαθέτουμε μια τρίτη αφόρτιστη μεταλλική σφαίρα Γ, της ίδιας ακτίνας με τις προηγούμενες, η οποία είναι δεμένη σε μονωτική ράβδο, από όπου την κρατάμε στο χέρι μας. Φέρνουμε σε επαφή τη σφαίρα Γ πρώτα με την Α και στη συνέχεια με τη Β σφαίρα και στη συνέχεια την απομακρύνουμε. Υποστηρίζεται ότι κατά την επαφή δύο σφαιρών, το υπάρχον φορτίο ισοκατανέμεται μεταξύ τους, αφού η κατανομή του εξαρτάται μόνο από την ακτίνα κάθε σφαίρας (και εδώ έχουμε ίσες ακτίνες).
Αν τελικά η τάση του νήματος Ν2 είναι Τ2=0,001Ν, να εξετάσετε αν η παραπάνω υπόθεση είναι σωστή.
iii) Κατά την παραπάνω διαδικασία άλλαξε η μάζα της Β σφαίρας. Να εξηγήσετε γιατί συμβαίνει αυτό υπολογίζοντας και την αύξηση ή μείωση της μάζας της. Μπορούμε πειραματικά να μετρήσουμε την παραπάνω μεταβολή μάζας;
Δίνεται το φορτίο και η μάζα του ηλεκτρονίου e=-1,6∙10-19C και m=9∙10-31kg, ενώ κατά τη διάρκεια του πειράματος οι σφαίρες δεν ανταλλάσουν φορτία με την ατμόσφαιρα.
ή


Σάββατο, 7 Οκτωβρίου 2017

Δυο «παρόμοιες» κινήσεις


Μια σφαίρα Σ1 μάζας m=0,2kg εκτοξεύεται οριζόντια από ένα σημείο Ο, το οποίο βρίσκεται σε ύψος h=2m από το έδαφος, με αρχική ταχύτητα μέτρου υο=5m/s.
Μια δεύτερη όμοια σφαίρα Σ2 είναι δεμένη στο άκρο αβαρούς και μη εκτατού νήματος μήκους l=2m, το άλλο άκρο του οποίου  δένεται στο έδαφος, στο σημείο Κ. Η σφαίρα Σ2 φέρεται στο σημείο Ο΄ σε  ύψος h με το νήμα κατακόρυφο και εκτοξεύεται οριζόντια με την ίδια ταχύτητα υο, εκτελώντας κυκλική κίνηση ακτίνας R=l.
i) Να υπολογιστεί η αρχική επιτάχυνση κάθε σφαίρας, αμέσως μετά την εκτόξευση, καθώς και η τάση του νήματος τη στιγμή αυτή.
ii) Μετά από λίγο η πρώτη σφαίρα περνάει από το σημείο Α, σε ύψος h1=0,8m.
  α) Να υπολογιστεί το μέτρο της ταχύτητας υ1, καθώς και η επιτάχυνσης της σφαίρας.
  β) Ποιος ο ρυθμός μεταβολής της κινητικής ενέργειας της σφαίρας στη θέση αυτή;
iii) Αντίστοιχα μετά από λίγο και η σφαίρα Σ2 φτάνει στη θέση Β σε ύψος h1 από το έδαφος.
  α) Να βρεθεί το μέτρο της ταχύτητάς της υ2, καθώς και η τάση του νήματος στη θέση αυτή.
  β) Ποιος ο αντίστοιχος ρυθμός μεταβολής της κινητικής ενέργειας της σφαίρας Σ2 στη θέση Β;
Δίνεται g=10m/s2, ενώ η αντίσταση του αέρα θεωρείται αμελητέα.
ή


Πέμπτη, 5 Οκτωβρίου 2017

Ένας ποδηλάτης αλλάζει λάστιχο


Ένας ποδηλάτης προκειμένου να αλλάξει λάστιχο, γυρίζει ανάποδα το ποδήλατο και το σταθεροποιεί στο οριζόντιο έδαφος. Νωρίτερα είχε βρέξει και όταν γύρισε μια φορά και άφησε ελεύθερο τον τροχό, παρατήρησε σταγόνες νερού, που αποχωρίζονται όταν περνούν από την κατώτερη θέση, να φτάνουν στο έδαφος σε μέγιστη οριζόντια απόσταση x = 1,6m. H ακτίνα του τροχού είναι R = 0,5m και το κατώτερο σημείο του Γ απέχει από το οριζόντιο έδαφος h = 0,8m.
α) Μπορεί ο ποδηλάτης να υπολογίσει τη γωνιακή ταχύτητα του τροχού;
β) Με την ταχύτητα που υπολογίσατε στο (α) ερώτημα, πόσο διάστημα θα μπορούσε να διανύσει ο ποδηλάτης σε 10min;
γ) Ποιο είναι το μέτρο της ακτινικής συνιστώσας της δύναμης συνάφειας, που δέχεται από το λάστιχο μια σταγόνα μάζας m = 3.10-4kg, όταν περνά από:
i) το σημείο Α, που βρίσκεται στο ίδιο οριζόντιο επίπεδο με το κέντρο του τροχού;
ii) το ανώτερο σημείο Β;
iii) το κατώτερο σημείο Γ;
Δίνεται g = 10m/s2  και δεχόμαστε αμελητέες τριβές ή αντιστάσεις. 


Απάντηση

Όταν αλλάζει η κατεύθυνση της δύναμης


Στο σημείο Ο ενός λείου οριζόντιου επιπέδου ηρεμεί ένα σώμα μάζας 10kg. Σε μια στιγμή t0=0, στο σώμα ασκείται μια σταθερή οριζόντια δύναμη μέτρου F=5Ν, οπότε τη στιγμή t1=4s, το σώμα φτάνει στο σημείο Α, έχοντας ταχύτητα υ1. Τη στιγμή αυτή η δύναμη αλλάζει κατεύθυνση και γίνεται κάθετη στο ευθύγραμμο τμήμα ΟΑ, παραμένουσα οριζόντια και με σταθερή κατεύθυνση, ενώ διατηρεί σταθερό και το μέτρο της.
i) Να βρεθεί η ταχύτητα υ1 καθώς και η απόσταση (ΟΑ).
ii) Να βρεθεί  η ταχύτητα του σώματος υ2 τη χρονική στιγμή t2=8s.
iii) Πόσο απέχει η θέση Β, από την οποία περνά το σώμα τη στιγμή t2, από την αρχική θέση Ο;
iv) Με ποιο ρυθμό προσφέρει ενέργεια στο σώμα η δύναμη F, στις θέσεις Α (μετά την αλλαγή κατεύθυνσης) και Β;
ή
Όταν αλλάζει η κατεύθυνση της δύναμης


Κυριακή, 1 Οκτωβρίου 2017

Ένα εκκρεμές σε ηλεκτρικό πεδίο


Ένα μικρό σφαιρίδιο Α είναι δεμένο στο άκρο μονωτικού νήματος, το άλλο άκρο του οποίου είναι δεμένο σε μια άλλη μικρή σφαίρα στο σημείο Ο, η οποία φέρει φορτίο +Q. Αφήνουμε το σφαιρίδιο Α να κινηθεί από μια θέση (1), όπου το νήμα σχηματίζει γωνία θ με την κατακόρυφη, όπως στο σχήμα και φτάνει στην κατακόρυφη θέση (2), με ταχύτητα υ1.
Φορτίζουμε το σφαιρίδιο Α με θετικό φορτίο +q και το αφήνουμε ξανά να κινηθεί από τη θέση (1).
i)  Να σχεδιάσετε τις ηλεκτρικές δυνάμεις που ασκούνται στο σφαιρίδιο Α στις θέσεις (1) και (2) και να συγκρίνετε τα μέτρα τους.
ii) Για το έργο της ηλεκτρικής δύναμης, η οποία ασκείται στο σφαιρίδιο από την θέση (1) μέχρι τη θέση (2) ισχύει:
α) W12<0,    β) W12 = 0,    γ) W12 > 0.
iii) Για την ταχύτητα υ2, με την οποία το σφαιρίδιο φτάνει στην κατακόρυφη ισχύει:
α) υ2 < υ1,    γ) υ2  = υ1,     β) υ2 > υ1.
Να δικαιολογήσετε τις απαντήσεις σας.
ή


Σάββατο, 16 Σεπτεμβρίου 2017

Τρεις σφαίρες στην ταράτσα


Βρισκόμαστε  στην ταράτσα ενός κτιρίου και διαθέτουμε τρεις μικρές όμοιες σφαίρες Σ1, Σ2, και Σ3.
Εκτοξεύουμε οριζόντια τη σφαίρα Σ1. Ο χρόνος για να φτάσει στο έδαφος είναι t1.
Στη συνέχεια εκτοξεύουμε κατακόρυφα προς τα κάτω με αρχική ταχύτητα υ0 τη σφαίρα Σ2. Ο χρόνος για να φτάσει στο έδαφος στη βάση του κτιρίου είναι t2.

Tέλος εκτοξεύουμε την τρίτη σφαίρα Σ3 προς τα πάνω με την ίδια αρχική ταχύτητα υ0. Ο χρόνος για να φτάσει στο έδαφος είναι t3.
Αν η αντίσταση του αέρα είναι αμελητέα, οι χρόνοι t1, t2, t3 συνδέονται με τη σχέση

Απάντηση

Τρίτη, 12 Σεπτεμβρίου 2017

Μια σφαίρα παλινδρομεί ανάμεσα σε δύο κτίρια

Σώμα μάζας m εκτοξεύεται από την ταράτσα του κτιρίου 1 με οριζόντια ταχύτητα μέτρου υ0 στο
απέναντι κτίριο 2 που απέχει απόσταση d εκτελώντας οριζόντια βολή όπως φαίνεται στο σχήμα. Το σφαιρίδιο χτυπά ελαστικά στο κτίριο 2 στο σημείο Α έχοντας μετακινηθεί κατακόρυφα κατά y1 απο την αρχική θέση εκτόξευσης. Κατόπιν χτυπά ελαστικά στο σημείο Β του κτιρίου 1 και μετακινείται κατακόρυφα κατα y2 απο το σημείο Α. Οι επιφάνειες των κτιρίων είναι λείες.

i) Ο λόγος των κατακόρυφων αποστάσεων y1/y2 ισούται με: 

Τετάρτη, 9 Αυγούστου 2017

Ένα σύστημα, η ορμή και η ενέργεια

Μια λεπτή σανίδα AB, μήκους 4m και μάζας Μ=1kg, ηρεμεί σε λείο οριζόντιο επίπεδο. Πάνω στη σανίδα και στο αριστερό άκρο της Α ηρεμεί ένα μικρό σώμα Σ, μάζας m=0,2kg. Κάποια στιγμή t0=0 το Σ δέχεται στιγμιαίο κτύπημα, με αποτέλεσμα να αποκτήσει αρχική ταχύτητα υ0=4m/s και να κινηθεί κατά μήκος της σανίδας.
Αν τη στιγμή t1=1s, το Σ έχει ταχύτητα υ1=2m/s, να βρεθούν τη χρονική αυτή στιγμή:
i) Η ταχύτητα της σανίδας.
ii) Οι ρυθμοί μεταβολής της ορμής, του σώματος Σ, της σανίδας και του συστήματος σώμα Σ-σανίδα.
iii) Η απόσταση του σώματος Σ από το άκρο Β της σανίδας.
iv) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Επαναλαμβάνουμε το πείραμα, αλλά τώρα η σανίδα αρχικά ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει τριβή με συντελεστές τριβής μs=μ=0,02. Ξανά για τη στιγμή t1=1s, να υπολογιστούν:
v) Οι ταχύτητες του Σ και της σανίδας.
vi) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Δίνεται g=10m/s2.

ή

Δευτέρα, 17 Ιουλίου 2017

Μια οριζόντια «οριζόντια βολή»

Στην κορυφή Α ενός ορθογώνιου τραπεζιού ΑΒΓΔ με πλευρές (ΑΒ)=2,75m και (ΑΔ)=1m ηρεμεί μια μικρή σφαίρα μάζας m=0,8 kg. Σε μια στιγμή δέχεται ένα κτύπημα με αποτέλεσμα να αποκτήσει οριζόντια ταχύτητα υο στη διεύθυνση της ΑΒ ενώ ταυτόχρονα ασκείται πάνω της μια σταθερή δύναμη F, μέτρου F=0,5N, η διεύθυνση της οποίας σχηματίζει γωνία θ με την διεύθυνση της ΑΒ, όπου ημθ=0,8 και συνθ=0,6. Η σφαίρα κινείται χωρίς τριβές και εγκαταλείπει το τραπέζι από την κορυφή Γ, όπως στο σχήμα.
i)  Επί πόσο χρόνο κινήθηκε πάνω στο τραπέζι η σφαίρα;
ii)  Να υπολογιστεί η αρχική ταχύτητα υο.
iii) Πόση ενέργεια μεταφέρθηκε στη σφαίρα μέσω του έργου της δύναμης F από το Α στο Γ και ποια η μέση ισχύς της ασκούμενης δύναμης F;
iv) Με ποιο ρυθμό η δύναμη F μεταφέρει ενέργεια στη σφαίρα τη στιγμή t=0 (αμέσως μόλις αρχίσει να κινείται) και ελάχιστα πριν εγκαταλείψει το τραπέζι;
ή