Δευτέρα 30 Οκτωβρίου 2017

Μία πέτρα δένεται σε σχοινί

Ένα σώμα μάζας m, (πέτρα) δένεται σε ιδανικό σχοινί μήκους  L. Κάποια στιγμή ένας μαθητής θέτει το σώμα σε κατακόρυφη τροχιά ξεκινώντας από την κάτω κατακόρυφη θέση Α, όπως φαίνεται στο σχήμα 1. Αρχικά υπάρχει ένα μεταβατικό στάδιο όπου το χέρι του παιδιού δεν είναι σταθερό σε ένα σημείο ούτε η τροχιά απόλυτα κυκλική. Μετά από λίγο αποκαθίσταται κατακόρυφη κυκλική τροχιά σταθερής ακτίνας με το νήμα να είναι συνεχώς τεντωμένο και το κέντρο της τροχιάς να μπορεί να θεωρηθεί σταθερό. Αν οι δυνάμεις από τον αέρα δεν ληφθούν υπόψη ούτε υπάρχουν ελαστικές παραμορφώσεις στο σχοινί, να απαντήσετε στις ακόλουθες προτάσεις.
i)  Μόλις η τροχιά του σώματος σταθεροποιηθεί το νήμα είναι:
α) Συνεχώς κάθετο με την γραμμική ταχύτητα.

Πέμπτη 26 Οκτωβρίου 2017

Οι συχνότητες σε δυο ΟΚΚ

Δυο σώματα Α και Β με μάζες m1=2m και m2=m αντίστοιχα, τα οποία θεωρούνται υλικά σημεία, κινούνται σε λείο οριζόντιο επίπεδο, δεμένα στα άκρα δύο νημάτων με μήκη l και 2l, διαγράφοντας κυκλικές τροχιές, με κέντρα Ο και Κ και με ταχύτητες σταθερού μέτρου, όπως στο σχήμα. Σε ορισμένο χρόνο Δt και τα δυο σώματα εκτελούν 22 πλήρεις περιστροφές.
i)  Για τις συχνότητες κίνησης f1 και f2  των σωμάτων Α και Β αντίστοιχα ισχύει:
α) f1< f2,     β) f1=f2,      γ) f1>f2.
ii) Για τις αντίστοιχες γωνιακές ταχύτητες ισχύει:
α) ω1 < ω2,    β) ω12,     γ) ω1> ω2.
iii) Για τα μέτρα των (γραμμικών) ταχυτήτων ισχύει:
α) υ1 < υ2,    β) υ12,     γ) υ12.
iv) Για τα αντίστοιχα μέτρα των επιταχύνσεων έχουμε:
α) α1 < α2,    β) α12,     γ) α1> α2.
v) Ενώ για τα μέτρα των συνισταμένων δυνάμεων:
α) F1 < F2,    β) F1=F2,     γ) F1> F2.
Να δικαιολογήσετε τις απαντήσεις σας.
ή


Παρασκευή 20 Οκτωβρίου 2017

Τεστ στο νόμο του Coulomb 2017

Τάξη Β Λυκείου
Μάθημα Φυσική γενικής παιδείας
Τεστ στο νόμο του Coulomb.
Ονοματεπώνυμο ………………………………………………………………………………………………
Ερωτήσεις με αιτιολόγηση.
Στις παρακάτω δύο ερωτήσεις να επιλέξετε τη σωστή αιτιολογώντας την απάντησή σας.
1. Δύο μικρές μεταλλικές σφαίρες Α και Β είναι φορτισμένες με φορτία Q και 2Q αντίστοιχα και βρίσκονται σε απόσταση r μεταξύ τους, οπότε απωθούνται με δύναμη μέτρου F. Φέρουμε σε επαφή τη σφαίρα Β με άλλη όμοια αφόρτιστη μεταλλική σφαίρα Γ και ξανατοποθετούμε τη σφαίρα Β σε απόσταση r από τη σφαίρα Α. Η δύναμη μεταξύ των σφαιρών Α και Β έχει τώρα μέτρο:
α. F β. 2F γ. F/2 δ. 3F Η συνέχεια εδώ

Δευτέρα 16 Οκτωβρίου 2017

Μια κατακόρυφη κυκλική τροχιά

Μια μικρή σφαίρα Σ, μάζας m=0,5kg, η οποία θεωρείται υλικό σημείο,  είναι προσκολλημένη στο άκρο μιας ράβδου μήκους l=1m, η οποία στρέφεται με σταθερή γωνιακή ταχύτητα, γύρω από οριζόντιο άξονα, ο οποίος περνά από το άλλο της άκρο Ο, διαγράφοντας κατακόρυφο επίπεδο. Η περίοδος περιστροφής είναι Τ=2π/√6≈2,56s.
i) Τι κίνηση πραγματοποιεί η σφαίρα Σ; Να σχεδιάσετε πάνω στο σχήμα την ταχύτητα και τη γωνιακή ταχύτητα της σφαίρας.
ii) Να υπολογίσετε τα μέτρα της (γραμμικής) ταχύτητας και της γωνιακής ταχύτητας της σφαίρας.
iii) Σε μια στιγμή η σφαίρα περνά από τη θέση Α, όπου η γωνία που σχηματίζει η ράβδος με την οριζόντια διεύθυνση είναι θ=37°. Σε πόσο χρόνο η σφαίρα θα φτάσει (για πρώτη φορά)στη θέση Β με τη ράβδο οριζόντια;
iv) Πόση δύναμη ασκεί η ράβδος στη σφαίρα, στη θέση Α του σχήματος;
Δίνεται g=10m/s2 ενώ ημ37°=0,6 και συνθ=0,8.

Πέμπτη 12 Οκτωβρίου 2017

Μεταφέροντας φορτία


Σε λείο οριζόντιο μονωτικό δάπεδο ηρεμούν δυο μικρές μεταλλικές φορτισμένες σφαίρες Α και Β, με ίσες ακτίνες, οι οποίες είναι δεμένες μέσω δύο οριζόντιων μονωτικών νημάτων Ν1 και Ν2, όπως στο σχήμα. Η σφαίρα Α φέρει φορτίο q1=0,4μC, ενώ μετρώντας (μέσω αισθητήρα δύναμης) την τάση του νήματος Ν1, που την συγκρατεί, βρίσκουμε Τ1=0,006Ν. Η απόσταση μεταξύ των κέντρων των σφαιρών είναι d=60cm.
i)   Να υπολογίσετε το φορτίο της Β σφαίρας, καθώς και την τάση του νήματος Ν2.
ii)  Διαθέτουμε μια τρίτη αφόρτιστη μεταλλική σφαίρα Γ, της ίδιας ακτίνας με τις προηγούμενες, η οποία είναι δεμένη σε μονωτική ράβδο, από όπου την κρατάμε στο χέρι μας. Φέρνουμε σε επαφή τη σφαίρα Γ πρώτα με την Α και στη συνέχεια με τη Β σφαίρα και στη συνέχεια την απομακρύνουμε. Υποστηρίζεται ότι κατά την επαφή δύο σφαιρών, το υπάρχον φορτίο ισοκατανέμεται μεταξύ τους, αφού η κατανομή του εξαρτάται μόνο από την ακτίνα κάθε σφαίρας (και εδώ έχουμε ίσες ακτίνες).
Αν τελικά η τάση του νήματος Ν2 είναι Τ2=0,001Ν, να εξετάσετε αν η παραπάνω υπόθεση είναι σωστή.
iii) Κατά την παραπάνω διαδικασία άλλαξε η μάζα της Β σφαίρας. Να εξηγήσετε γιατί συμβαίνει αυτό υπολογίζοντας και την αύξηση ή μείωση της μάζας της. Μπορούμε πειραματικά να μετρήσουμε την παραπάνω μεταβολή μάζας;
Δίνεται το φορτίο και η μάζα του ηλεκτρονίου e=-1,6∙10-19C και m=9∙10-31kg, ενώ κατά τη διάρκεια του πειράματος οι σφαίρες δεν ανταλλάσουν φορτία με την ατμόσφαιρα.

Σάββατο 7 Οκτωβρίου 2017

Δυο «παρόμοιες» κινήσεις


Μια σφαίρα Σ1 μάζας m=0,2kg εκτοξεύεται οριζόντια από ένα σημείο Ο, το οποίο βρίσκεται σε ύψος h=2m από το έδαφος, με αρχική ταχύτητα μέτρου υο=5m/s.
Μια δεύτερη όμοια σφαίρα Σ2 είναι δεμένη στο άκρο αβαρούς και μη εκτατού νήματος μήκους l=2m, το άλλο άκρο του οποίου  δένεται στο έδαφος, στο σημείο Κ. Η σφαίρα Σ2 φέρεται στο σημείο Ο΄ σε  ύψος h με το νήμα κατακόρυφο και εκτοξεύεται οριζόντια με την ίδια ταχύτητα υο, εκτελώντας κυκλική κίνηση ακτίνας R=l.
i) Να υπολογιστεί η αρχική επιτάχυνση κάθε σφαίρας, αμέσως μετά την εκτόξευση, καθώς και η τάση του νήματος τη στιγμή αυτή.
ii) Μετά από λίγο η πρώτη σφαίρα περνάει από το σημείο Α, σε ύψος h1=0,8m.
  α) Να υπολογιστεί το μέτρο της ταχύτητας υ1, καθώς και η επιτάχυνσης της σφαίρας.
  β) Ποιος ο ρυθμός μεταβολής της κινητικής ενέργειας της σφαίρας στη θέση αυτή;
iii) Αντίστοιχα μετά από λίγο και η σφαίρα Σ2 φτάνει στη θέση Β σε ύψος h1 από το έδαφος.
  α) Να βρεθεί το μέτρο της ταχύτητάς της υ2, καθώς και η τάση του νήματος στη θέση αυτή.
  β) Ποιος ο αντίστοιχος ρυθμός μεταβολής της κινητικής ενέργειας της σφαίρας Σ2 στη θέση Β;
Δίνεται g=10m/s2, ενώ η αντίσταση του αέρα θεωρείται αμελητέα.

Πέμπτη 5 Οκτωβρίου 2017

Ένας ποδηλάτης αλλάζει λάστιχο


Ένας ποδηλάτης προκειμένου να αλλάξει λάστιχο, γυρίζει ανάποδα το ποδήλατο και το σταθεροποιεί στο οριζόντιο έδαφος. Νωρίτερα είχε βρέξει και όταν γύρισε μια φορά και άφησε ελεύθερο τον τροχό, παρατήρησε σταγόνες νερού, που αποχωρίζονται όταν περνούν από την κατώτερη θέση, να φτάνουν στο έδαφος σε μέγιστη οριζόντια απόσταση x = 1,6m. H ακτίνα του τροχού είναι R = 0,5m και το κατώτερο σημείο του Γ απέχει από το οριζόντιο έδαφος h = 0,8m.
α) Μπορεί ο ποδηλάτης να υπολογίσει τη γωνιακή ταχύτητα του τροχού;
β) Με την ταχύτητα που υπολογίσατε στο (α) ερώτημα, πόσο διάστημα θα μπορούσε να διανύσει ο ποδηλάτης σε 10min;
γ) Ποιο είναι το μέτρο της ακτινικής συνιστώσας της δύναμης συνάφειας, που δέχεται από το λάστιχο μια σταγόνα μάζας m = 3.10-4kg, όταν περνά από:
i) το σημείο Α, που βρίσκεται στο ίδιο οριζόντιο επίπεδο με το κέντρο του τροχού;
ii) το ανώτερο σημείο Β;
iii) το κατώτερο σημείο Γ;
Δίνεται g = 10m/s2  και δεχόμαστε αμελητέες τριβές ή αντιστάσεις. 


Απάντηση

Όταν αλλάζει η κατεύθυνση της δύναμης


Στο σημείο Ο ενός λείου οριζόντιου επιπέδου ηρεμεί ένα σώμα μάζας 10kg. Σε μια στιγμή t0=0, στο σώμα ασκείται μια σταθερή οριζόντια δύναμη μέτρου F=5Ν, οπότε τη στιγμή t1=4s, το σώμα φτάνει στο σημείο Α, έχοντας ταχύτητα υ1. Τη στιγμή αυτή η δύναμη αλλάζει κατεύθυνση και γίνεται κάθετη στο ευθύγραμμο τμήμα ΟΑ, παραμένουσα οριζόντια και με σταθερή κατεύθυνση, ενώ διατηρεί σταθερό και το μέτρο της.
i) Να βρεθεί η ταχύτητα υ1 καθώς και η απόσταση (ΟΑ).
ii) Να βρεθεί  η ταχύτητα του σώματος υ2 τη χρονική στιγμή t2=8s.
iii) Πόσο απέχει η θέση Β, από την οποία περνά το σώμα τη στιγμή t2, από την αρχική θέση Ο;
iv) Με ποιο ρυθμό προσφέρει ενέργεια στο σώμα η δύναμη F, στις θέσεις Α (μετά την αλλαγή κατεύθυνσης) και Β;

Κυριακή 1 Οκτωβρίου 2017

Ένα εκκρεμές σε ηλεκτρικό πεδίο


Ένα μικρό σφαιρίδιο Α είναι δεμένο στο άκρο μονωτικού νήματος, το άλλο άκρο του οποίου είναι δεμένο σε μια άλλη μικρή σφαίρα στο σημείο Ο, η οποία φέρει φορτίο +Q. Αφήνουμε το σφαιρίδιο Α να κινηθεί από μια θέση (1), όπου το νήμα σχηματίζει γωνία θ με την κατακόρυφη, όπως στο σχήμα και φτάνει στην κατακόρυφη θέση (2), με ταχύτητα υ1.
Φορτίζουμε το σφαιρίδιο Α με θετικό φορτίο +q και το αφήνουμε ξανά να κινηθεί από τη θέση (1).
i)  Να σχεδιάσετε τις ηλεκτρικές δυνάμεις που ασκούνται στο σφαιρίδιο Α στις θέσεις (1) και (2) και να συγκρίνετε τα μέτρα τους.
ii) Για το έργο της ηλεκτρικής δύναμης, η οποία ασκείται στο σφαιρίδιο από την θέση (1) μέχρι τη θέση (2) ισχύει:
α) W12<0,    β) W12 = 0,    γ) W12 > 0.
iii) Για την ταχύτητα υ2, με την οποία το σφαιρίδιο φτάνει στην κατακόρυφη ισχύει:
α) υ2 < υ1,    γ) υ2  = υ1,     β) υ2 > υ1.
Να δικαιολογήσετε τις απαντήσεις σας.

ή